Entropic origin of Mg2+-facilitated RNA folding.
نویسندگان
چکیده
Mg(2+) is essential for the proper folding and function of RNA, though the effect of Mg(2+) concentration on the free energy, enthalpy, and entropy landscapes of RNA folding is unknown. This work exploits temperature-controlled single-molecule FRET methods to address the thermodynamics of RNA folding pathways by probing the intramolecular docking/undocking kinetics of the ubiquitous GAAA tetraloop-receptor tertiary interaction as a function of [Mg(2+)]. These measurements yield the barrier and standard state enthalpies, entropies, and free energies for an RNA tertiary transition, in particular, revealing the thermodynamic origin of [Mg(2+)]-facilitated folding. Surprisingly, these studies reveal that increasing [Mg(2+)] promotes tetraloop-receptor interaction by reducing the entropic barrier (-TΔS(++)(dock)) and the overall entropic penalty (-TΔS(+) (dock)) for docking, with essentially negligible effects on both the activation enthalpy (ΔH(++)(dock)) and overall exothermicity (ΔH(+)(dock)). These observations contrast with the conventional notion that increasing [Mg(2+)] facilitates folding by minimizing electrostatic repulsion of opposing RNA helices, which would incorrectly predict a decrease in ΔH(++)(dock)) and ΔH(+)(dock)) with [Mg(2+)]. Instead we propose that higher [Mg(2+)] can aid RNA folding by decreasing the entropic penalty of counterion uptake and by reducing disorder of the unfolded conformational ensemble.
منابع مشابه
Entropic stabilization of folded RNA in crowded solutions measured by SAXS
Non-coding RNAs must fold into specific structures that are stabilized by metal ions and other co-solutes in the cell's interior. Large crowder molecules such as PEG stabilize a bacterial group I ribozyme so that the RNA folds in low Mg2+ concentrations typical of the cell's interior. To understand the thermodynamic origins of stabilization by crowder molecules, small angle X-ray scattering was...
متن کاملMg2+-RNA interaction free energies and their relationship to the folding of RNA tertiary structures.
Mg2+ ions are very effective at stabilizing tertiary structures in RNAs. In most cases, folding of an RNA is so strongly coupled to its interactions with Mg2+ that it is difficult to separate free energies of Mg2+-RNA interactions from the intrinsic free energy of RNA folding. To devise quantitative models accounting for this phenomenon of Mg2+-induced RNA folding, it is necessary to independen...
متن کاملMg2+-dependent conformational change of RNA studied by fluorescence correlation and FRET on immobilized single molecules.
Fluorescence correlation spectroscopy (FCS) of fluorescence resonant energy transfer (FRET) on immobilized individual fluorophores was used to study the Mg2+-facilitated conformational change of an RNA three-helix junction, a structural element that initiates the folding of the 30S ribosomal subunit. Transitions of the RNA junction between open and folded conformations resulted in fluctuations ...
متن کاملDivalent ion competition reveals reorganization of an RNA ion atmosphere upon folding
Although RNA interactions with K+ and Mg2+ have been studied extensively, much less is known about the third most abundant cation in bacterial cells, putrescine2+, and how RNA folding might be influenced by the three ions in combination. In a new approach, we have observed the competition between Mg2+ and putrescine2+ (in a background of K+) with native, partially unfolded and highly extended c...
متن کاملExploring the electrostatic energy landscape for tetraloop-receptor docking.
It has long been appreciated that Mg(2+) is essential for the stabilization of RNA tertiary structure. However, the problem of quantitative prediction for the ion effect in tertiary structure folding remains. By using the virtual bond RNA folding model (Vfold) to generate RNA conformations and the newly improved tightly bound ion model (TBI) to treat ion-RNA interactions, we investigate Mg(2+)-...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 109 8 شماره
صفحات -
تاریخ انتشار 2012